
Disjoint Set Union Using Relaxed Scheduling

Martin Hafskjold �oresen

December 4, 2018

1 Introduction

1.1 Relaxed Scheduling

By Claim 1 in [1] we know that for a k-relaxed queue the top element is always removed within (k) in expectation.

1.2 Our Problem

�e problem we are considering is as follows: we have a relaxed queue Q of tasks, which are operations to the Disjoint-Set

problem. �e tasks are ordered by some ordering � . We want to look at the probability of dequeueing a task t from Q that

“depends” on another task t′ in Q with a lower rank, meaning t′ is before t in � . When we get such a task we have to insert

it back into Q, as we want to respect the ordering that � imposes on us, if there is a dependency between the tasks. By

�nding this we want to bound the number of times we have to re-insert something into Q.

�e dependencies between tasks form a graph G, in which the vertices are tasks, and there is an edge between two tasks if

they depend on each other.

2 Independent Collisions

One way to go about this problem is to �nd the probability that any two uniformly sampled tasks collide: Pru,v∼E[u ⊗ v]. If

we have this we can bound the number of expected collisions. We begin with de�ning what we mean by a collision.

De�nition 1 (Edge-collision). Two edges collide if they touch the same component in exactly one of their endpoints, and this
component is smaller or equal in size to the two others. When u and v collides we say u ⊗ v.

2.1 �e Structure of Random Graphs

Recall that G = (V , E) is a graph in which the vertices are tasks and the edges are dependencies between them. We assume

that this graph is random. Erdős–Rényi showed[2] the structure of random graphs asymptotically in the number of nodes.

In their model each edge is randomly inserted with a probability of p, or each graph on m edges is uniformly selected; these

two models are equivalent for the following results
1
. Let n = |V | and m = |E|. We look at the structure of G given the size of

m:

1. m ∈ [0, (12 − �)n] No component in G are of size more than O(log n).

2. m ∈ [(12 − �)n, (
1
2 + �)n] One large component is of increasing size. All other components are of size O(log n).

1
TODO: I think?

1

3. m ∈ [(12 + �)n, n
2) �e largest component is a giant, consisting of n2/3 vertices. No other component is of size larger

than O(log n)

Now we want the probability that two randomly selected edges, that are not yet in G, collide. We note that the second

largest component in all cases is O(log n), and by De�nition 1 we cannot have a collision in the largest component; this

simpli�es the analysis since we can get the same bound on the number of collisions in all three cases. Fix the �rst edge u.

If u is internal to some component we may discard it, so we assume that it is not. If u touches the largest component of

G we must have the collision in the remaining endpoint, which reduces the probability of a collision by a factor of 2. We

therefore assume that u connectes two components neither of which are the largest. In order to have u ⊗ v, exactly one of

the endpoints of v must be in either of the components that u touch. Since the sizes of all components except the giant is

(log n) the probability that either endpoint of v is “incident” to u is:

Pr
u,v∼E

[u ⊗ v] ≤ (2 log n/n) (1)

2.2 �e Number of Collisions

Fix the time at t = � . By Claim 1 we expect to have to pop (k) elements from the queue before ge�ing the top element.

All of these (k) elements have rank (k)2, so there are (k2) pairs of tasks we have to check. Each pair has a probability

(2 log n/n) by eq. (1), so the expected number of collisions at time t = � is

E[collisions at t = �] ≤ (2k2 log n/n). (2)

Summing over all time steps � we get

E[collisions] ≤
m
∑
�=1

(2k2 log n/n) = (
m
n
k2 log n) . (3)

2.2.1 Successful Pops

If we do get a taks that has no outstanding dependencies we can process it straight away, making the limit of the sum in

eq. (3) decrease by 1. What is the probability of this happening? Let t be the popped task. t cannot collide with any of the

(k) tasks before it in Q:

Pr[no-collisions] ≤ (1 − (2k log n/n))(k)

To get a rough idea of how this looks, we discard the s, and let k = log n:

Pr[no-collisions] ≈ (1 − 2 log2 n/n)log n

(According to Mathematica, this goes to 1, which means for large n we are almost guaranteed to have no collisions)

Comments

�is is slightly worse than �eorem 3.1 in [1], in which the expected number of collisions in the general framework is

 (mn) poly(k). It is not clear why this is, except for the fact that the above analysis is probably too pessimistic?

2
TODO: double check

2

3 Constraints on Sampled Edges

In Section 2 we assumed that the structure of the connectivity graph was totally random. It is not clear however that this is

the upper bounds for other types of structures on the Union operations. In this section we look at other possible Sampling
Graphs, from which the edges are sampled.

Let F be the connectivity forest on which we are solving the Union-Find problem, and let S be a graph on the same vertex

set, but with an edge set E that is di�erent from the complete set. We still have an element of randomness, namely the

ordering of the operations. We look at di�erent families of Es in order to try to �nd the worst case.

Metric of Fitness

First we must de�ne our metric of �tness. Intuitively we are trying to minimize the number of failed Pops from the task

queue, but we are also not willing to have few tasks (eg. letQ = ∅, and we have no collisions!). Let the �tness of a graph  (G)
be the ratio the number of tasks performed before no more collisions can take place to the number of expected collisions.

�e numerator is usually the number of sampled edges before the graph is connected. In Section 2 we considered G = Kn .

�en the �tness of Kn is

 (Kn) = (
m

m
n k2 log n)

= (
n

k2 log n)

Intuition

�e general idea is that the sampling graph is the target for all Union operations: each operation brings the connectivity

forest one step closer to becomming S. Unless S itself is a forest, the connectivity forest will not really become S, since we

ignore Unions that are internal to an already connected component (Eg. with S = Kn , F ends up as a spanning tree, not Kn).

Maybe some clever choice of S can force a random selection of edges into maximizing the number of collisions, while still

having a sizable set of tasks.

3.1 �e Cycle Graph

For each �xed edge u there are exactly two edges in the graph that are indicent. By relaxing the de�nition of a collision

to include these edges the probability of sampling an edge v such that u ⊗ v is Pru,v∼E [u ⊗ v] ≤ 2/(n − �), where � is the

iteration time. Since we require exactly n − 1 edges for the cycle to become connected, we have m = n − 1 Ignoring that

edges may be succesfully out-of-ordered processed the number of expected collisions is

n−1
∑
�=1

2k/(n − �) = 2kHn−1 = (k log n)

where Hn is the nth harmonic number. �e the �tness is

 (Cn) = (
n − 1
k log n)

Figure 1: �e Cycle Graph C12

3

3.2 �e Star Graph

�e Star graph Sn is the complete bipartite graph K1,n , and it is an example of a graph with (almost) no collisions. With the

exception of the �rst edge sampled all edges connects a single vertex to the largest component in the graph, so any pair of

edges shares the largest component.

Figure 2: �e Star Graph S12

Since the probability of a collision is zero a�er the �rst edge is sampled the expected number of collisions in total is the same

as the expected number of dequeues from the task queue before ge�ing the �rst element, which is ≤ 1/(1 − e−1/k) = (k).
Since Sn is a tree we need n − 1 edges to connect it. �us the �tness is

 (Sn) = (
n − 1
k)

3.3 �e Barbell Graph

Figure 3: �e Barbell graph B8

�e barbell graph Bn = (V , E) consists of two complete graphs Kn connected by a single edge, so |V | = 2n and |E| = 2(n2)+1 =
n(n − 1) + 1. Instead of considering the number of edges we must sample in expectation before connecting Bn we split the

analysis into two parts. Let ec be the edge that connects the two complete graphs in Bn , and look at the graph a�er sampling

(n log n) edges, and show that no collisions take place a�er this point:

Case 1: ec is not sampled. We expect both complete graphs to have (n log n) edges, which makes them connected in

expectation by Erdős–Rényi. Since we only have two components, no more collisions in the graph are possible.

Case 2: ec is sampled. We again expect that both of the complete graphs are connected, which makes the entire Bn con-

nected.

Next we must count the number of expected collisions within the �rst (n log n) sampled edges. If ec is not sampled we

expect to have twice the collisions compared to having a single Kn , since we have two independent Kn . If ec is sampled the

graph is depicted in Figure 4.

We wish to �nd the probability that two randomly sampled edges collide: Pru,v∼E [u ⊗ v]. Name the components that ec
connects A and B, and let the largest component in each complete graph be Mi . �e probability of a collision not including

A∪B is the same as when G = Kn , so we only need to consider collisions that include A∪B. �ere are two cases to consider:

(1) A ∪ B is the component the colliding edges share, and (2) A ∪ B is larger than some other component in the collision.

For the �rst case we note that the size of A ∪ B is (log n), since neither A nor B was not the largest component in their

4

C1

M1

A

C2

M2

B

ec

Figure 4: �e state of Bn a�er ec has been sampled.

respective graphs prior to the join, so the probability of a collision is bounded by the probability that both edges hit A ∪ B:

Pr
u,v∼E

[u ⊗ v ∧ u ∼ A ∪ B ∧ v ∼ A ∪ B] ≤ Pr
u,v∼E

[u ∼ A ∪ B ∧ v ∼ A ∪ B]

= (
2(log n)

n)(
2(log n)

n)

= (
log2 n
n2)

which is less probable than a random collision.

For the second case we have A ∪ B being the largest component in the collision. Without loss of generality let C1 be the

subgraph in which the collisions happens. �e addition of ec ma�ers in the analysis compared to the case without it because

there might be a component S1 such that |S1| > |A| but |S1| ≤ |A ∪ B|: now edges (m1, s1) and (a, s1) might collide, whereas

before adding ec they could not. Note that if A is the largest component in C1 it does not ma�er if we have sampled ec or

not, so we may assume that A is not the largest component, so that its size is (log n). In the worst case B is the largest

component in C2 and A∪B is larger than M1. Now any edge u ∈ C1 have (log2 n) potential edges with which it can collide,

namely all edges from its smaller component to A. �e probability that any of these edges are sampled next, and thus that

u ⊗ v is

Pr
u,v∼E

[u ∈ Ci ∧ u ⊗ v] ≤ (
log2 n
|E|) ≤ (

log2 n
n2)

�is shows that all cases which makes the barbell graph di�erent from the complete graph decreases the probability of a

collision, and so the expected number of collisions in Bn is less than that of Kn .

3.4 Summary

Table 1 summarizes the �tness of the graphs considered in this section.

Table 1: �e �tness  of the graphs discussed in this section.

Graph  (G)
Kn n/(k2 log n)
Cn (n − 1)/(k log n)
Sn (n − 1)/k
Bn ≥ n/(k2 log n)

5

We can then order the graphs by their �tness:

 (Kn) <  (Bn) <  (Cn) <  (Sn)

3.4.1 What about other graphs?

As we have seen, sampling from Bn or Sn instead of Kn does not increase the expected number of collisions. It is also di�cult

to come up with a graph that is worse than Kn , so it is a reasonable guess that Kn does maximize the number of collisions

in expectation.

Attempt 1

Perhaps we are able to show that for any graphG the addition of an edge does not decrease the number of expected collisions.

However, we are able to come up with a counterexample to this, as shown in Figure 5: prior to adding ec we are guaranteed

to have a collision since there is only two edges that remain, and these may collide. A�erwards we may get ec instead, which

does not collide, since the shared component is bigger than the single node.

�ere are a few things that feel o� about this, though: 1. this only shows that given this exact state we decrease the number

of expected collisions, at this step. It is not clear that the number is decreased overall. 2. this graph is very sparse, which

somehow should make it a nice graph? 3. in the se�ing of the task queue we only have two tasks le�, so the probability of

ge�ing the �rst element should be at least 1/2.

ec

u v

Figure 5

Attempt 2

Let a ∼ b be that a and b are in the same component.

Fix one edge a. Let C(a) denote the number of edges b such that a ⊗ b, and look at how C(a) is a�ected by adding an edge e
into the sampling graph. Let L and A be the largest and smallest component that a are connected to (ties), and let E be one

the components connected to e.

1. a ∼ e and e ∼ L: Since e cannot collide with a but the number of edges increases, the probability that a random edge

collides with a decreases.

2. a ∼ e and e ∼ A: �ere are two cases to consider:

(a) |A| ≤ |E|: e is now subject to collision with a. Since
C(a)
n ≤ C(a)+1

n+1 the probability increases, unless C(a) = n,

where n is the number of remaining edges in the sample graph.

(b) |A| > |E|: e cannot collide with a, so the probability decreases.

3. a � e: a and e can not collide.

We try to imagine the worst possible graph — that is the graph that maximizes the expected number of collisions — in hope

of ending up with a counter example to Kn , or Kn itself. �is is weird however, since changing the sampling graph also

changes the expected state of the forest.

6

Let Z(v) be the size of the component in which v is, and let L(v) be the number of nodes u such that Z(v) ≤ Z(u). �at is,

L(u) is a bound on the number of edges containing v that may collide with some other edge.

4 Random Notes

Loose ends and other ideas.

4.1 Neighborhoods in the dependency graph

�ere is a few interesting things to be said about the dependency graph. If we relax the notion of a collision to just sharing

exactly one endpoint, and assume that all tasks in the queue form a tree (that is, there are never any Union operations that

try to join two nodes that are already in the same component) we can form a new graph F ∗ in which the nodes are the

components of the connectivity forest, and the edges are the Union in Q. Now the dependency graph G is the line graph

L(F ∗). Furthermore, performing a task t in the connectivity forest correspond to contracting the edge corresponding to t in

F ∗; this in turn correspond to adding the following edges to the dependency graph: {(u, v)|(u, t) ∈ E ∧ (t, v) ∈ E}: that is, all

vertices (tasks) that have the performed task as a common neighbor become connected. In other words, the neighborhood

of t becomes fully connected.

Martin: [probably need a picture here!]

�is is interesting because line graphs have a curious property, namely that they cannot have S3 as an induced subgraph,

which means that all subset of three vertices of a neighborhood of any node cannot be an independent set (equivalently,

�(N (t)) ≤ 2 for all t). �is puts a requirement on the number of edges that the neighborhood of any element must contain,

which in turn gives us a bound on the number of edges that we introduce by fully connecting the neighborhood when a

task is performed.

What is this bound? First, for any three nodes to contain at least one edge, the neighborhood of any two nodes must contain

all nodes, so 2�(G) ≥ n −2 ⟹ �(G) ≥ n/2− 1. Consider the induced subgraph of the neighbourhood of some node u. Since

m ≥ 1/2∑n �(G) we have

n(n − 2)
4

≤ m ≤
n(n − 1)

2
Here m is the number of edges in the neighbourhood, and n is the size of the neighbourhood, which is d(u) in F ∗. Martin:
[poorly written]

A series of Union operations correspond to a series of edge contractions in F ∗, so we have a sequence of F ∗s:

F ∗0 → F ∗1 → F ∗2 → ⋯ → F ∗m

each of which have a corresponding line graph L(F ∗i) in which the neighborhoods of each node becomes more and more

connected.

�e bo�om line of this is that the degree of the vertices in the dependency graph may tell us a lot about the degrees of future

dependency graphs a�er Union operations have been performed.

References

[1] Alistarh, D., Brown, T., Kopinsky, J., and Nadiradze, G. Relaxed schedulers can e�ciently parallelize iterative

algorithms. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (2018), ACM, pp. 377–386.

[2] Erdos, P., and Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

7

	Introduction
	Relaxed Scheduling
	Our Problem

	Independent Collisions
	The Structure of Random Graphs
	The Number of Collisions
	Successful Pops

	Constraints on Sampled Edges
	The Cycle Graph
	The Star Graph
	The Barbell Graph
	Summary
	What about other graphs?

	Random Notes
	Neighborhoods in the dependency graph

